Visualizations
−Node Angles
Angular Velocity
ω₁: 0.00 rad/s
ω₂: 0.00 rad/s
System Energy (J)
KE 0.00
PE 0.00
Etotal 0.00
Avg E 0.00
ΔE 0.00 %
Coefficient of variation (last ~1s)Energy Detail (J)
KE₁ 0.00
KE₂ 0.00
PE₁ 0.00
PE₂ 0.00
Forces on Bob 1 (N)
Fg,x 0.00
Fg,y 0.00
Fd,x 0.00
Fd,y 0.00
FB,x 0.00
FB,y 0.00
FW,x 0.00
FW,y 0.00
Forces on Bob 2 (N)
Fg,x 0.00
Fg,y 0.00
Fd,x 0.00
Fd,y 0.00
FB,x 0.00
FB,y 0.00
FW,x 0.00
FW,y 0.00
Angular Velocity History
Energy History
Energy Stability
Simulation Canvas
−Controls & Parameters
−Equations Used
−Coordinates:
y1 = L1 cos θ1
x2 = x1 + L2 sin θ2 = L1 sin θ1 + L2 sin θ2
y2 = y1 + L2 cos θ2 = L1 cos θ1 + L2 cos θ2
Lagrangian (ℒ = T − V):
V = −m1 g L1 cos θ1 − m2 g (L1 cos θ1 + L2 cos θ2)
Equations of Motion (from Euler-Lagrange: d/dt(∂ℒ/∂θ̇i) − ∂ℒ/∂θi = Qi):
M21 M22
θ̈2
F2
Q2,ext
θ̈2 = [2sin(θ1−θ2)(L1θ̇12(m1+m2)+g(m1+m2)cos θ1+L2m2θ̇22cos(θ1−θ2))] / [L2(2m1+m2−m2cos(2θ1−2θ2))] + Q′2
External Forces (Cartesian Components & Generalized Torques Qi):
Fd,j = −dj vj
Fwind = (FW cos φW, FW sin φW)
FB,j = qj (vj × B) = qj (vj,y Bz, −vj,x Bz)
Qi,ext = Σj=1,2 (rj × (Fd,j + Fwind + FB,j))z
Total Energy (E = T + V):
Numerical Integration (Symplectic Semi-Implicit Euler):
θn+1 = θn + h θ̇n+½
θ̇n+1 = θ̇n+½ + (h/2)θ̈(θn+1, θ̇n+½)
Energy Conservation: This simulation uses a symplectic (energy-preserving) integrator that maintains the Hamiltonian structure of the system. In an ideal system with no damping (d1=d2=0) and no external forces (wind/Lorentz forces = 0), the total mechanical energy E = T + V remains nearly constant over long simulations. Unlike standard explicit methods, symplectic integrators prevent long-term energy drift by preserving the phase-space volume. The "Energy Variation" metric reflects small bounded oscillations in energy (not cumulative drift) or actual energy changes if non-conservative forces are active. For the default parameters (L1=L2=1, m1=m2=1, g=9.80665, θ1=120°, θ2=−30°, θ̇1=θ̇2=0), the initial total energy is approximately 1.314 Joules.