Visualizations
−Node Angles
Angular Velocity
ω₁: 0.00 rad/s
ω₂: 0.00 rad/s
System Energy (J)
KE 0.00
PE 0.00
Etotal 0.00
Avg E 0.00
ΔE 0.00 %
Avg & StDev % (last ~1s)Energy Detail (J)
KE₁ 0.00
KE₂ 0.00
PE₁ 0.00
PE₂ 0.00
Forces on Bob 1 (N)
Fg,x 0.00
Fg,y 0.00
Fd,x 0.00
Fd,y 0.00
FB,x 0.00
FB,y 0.00
FW,x 0.00
FW,y 0.00
Forces on Bob 2 (N)
Fg,x 0.00
Fg,y 0.00
Fd,x 0.00
Fd,y 0.00
FB,x 0.00
FB,y 0.00
FW,x 0.00
FW,y 0.00
Angular Velocity History
Energy History
Chaos History
Simulation Canvas
−Controls & Parameters
−Equations Used
−Coordinates:
Lagrangian ( $\mathcal{L} = T - V$ ):
Equations of Motion (from Euler-Lagrange $\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\theta}_i} - \frac{\partial \mathcal{L}}{\partial \theta_i} = Q_i$ ):
Where $M$ is the mass matrix, $F$ contains gravitational and centrifugal/Coriolis terms, and $Q_{ext}$ are external generalized forces (damping, wind, Lorentz). $Q'_{i}$ represents the effect of external torques after inverting the mass matrix.External Forces (Cartesian Components & Generalized Torques $Q_i$):
Total Energy ( $E = T + V$ ):
Numerical Integration (4th Order Runge-Kutta):
Energy Conservation: In an ideal system with no damping ($d_1=d_2=0$) and no external forces (wind/Lorentz forces = 0), the total mechanical energy $E = T + V$ should remain constant over time. This is because gravity is a conservative force. However, numerical integration methods like RK4 introduce small computational errors at each step, which can cause the calculated energy to drift slightly over long simulations. The "Energy Variation" metric reflects these numerical fluctuations or actual energy changes if non-conservative forces are active. For the default parameters ($L_1=L_2=1$, $m_1=m_2=1$, $g=9.80665$, $\theta_1=120^\circ$, $\theta_2=-30^\circ$, $\dot{\theta}_1=\dot{\theta}_2=0$), the initial total energy is approximately $1.314$ Joules.